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Oscillatory convective instability is shown to occur in a rotating fluid layer when 
convection is caused by surface-tension gradients at a free surface. The asymp- 
totic equations, valid when the Taylor number approaches infinity, are solved 
analytically, and the critical Marangoni number is evaluated numerically. 
Fluids with Prandtl numbers above 0.201 will exhibit only stationary instability. 
Fluids with smaller Prandtl numbers will exhibit oscillatory instability with 
the critical Marangoni number varying as M ,  Tfr, where Mo depends on the Prandtl 
number and T is the Taylor number. 

1. Introduction 
The occurrence of cellular convection in fluid layers heated from below can 

be attributed to two different mechanisms. The buoyancy mechanism, first 
proposed in Rayleigh’s (1916) analysis of BBnard’s (1900) experiments, domin- 
ates in fluid layers having depths greater than about one centimetre. When the 
depth of the fluid layer is less than about 0-5 ern the convective motion is pre- 
dominantly caused by the surface-tension mechanism, which was first analyzed 
by Pearson (1958). In both cases the convection is inhibited when the fluid layer 
is rotated about an axis perpendicular to the confining planes. The effect of 
rotation on buoyancy-driven convection is treated by Chandrasekhar (1953, 
1961), Chandrasekhar & Elbert (1955) and Nakagawa & Frenzen (1955) who 
report that oscillatory instability occurs in addition to stationary instability 
for fluids having Prandtl number less than 0.677. In  contrast, for the surface 
tension mechanism, Vidal & Acrivos (1966b) show that only stationary instability 
occurs for all Prandtl numbers. 

This result is surprising because the usual effect of non-conservative forces 
(such as the Coriolis force) is to make oscillatory instability possible. This is the 
case with buoyancy-driven convection when Coriolis or magnetic force terms 
are included (Chandrasekhar 1961) or in problems of elastic stability (Bolotin 
1963). Furthermore, the equations governing either buoyancy or surface-tension 
driven convection have a remarkable similarity even though in one case the eigen- 
value appears in the differential equation whereas in the other case the eigenvalue 
appears in the boundary conditions. In  both cases, however, the introduction of 

t Present address: Amoco Chemicals Corp., Whiting, Indiana 46394. 
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rotational effects leads to identical terms in the equations. Consequently, both 
the buoyancy and surface-tension driven problems should be affected the same 
way by the introduction of Coriolis forces. 

We can reach the same conclusion on physical grounds if we adopt Veronis’s 
(1959) discussion of the reasons for oscillatory instability. The momentum equa- 
tion represents a balance of local acceleration, Coriolis, gravitational and viscous 
forces (for the buoyancy problem). In  time-dependent motions of dynamical 
systems, the local acceleration partially offsets the constraining force of rotation. 
When the Prandtl number is small, viscous forces become small and the local 
acceleration becomes more important in the dynamical balance. Consequently 
we would expect time-dependent motions to be less stable, or more easily gener- 
ated, since then the local acceleration can offset part of the constraining force 
of rotation. Time-dependent neutral stability states are of course oscillatory. 
We would then expect oscillatory instability to occur for buoyancy-driven 
convection with Coriolis forces. I f  the convection is driven by surface-tension 
variations rather than density gradients, the gravitational force does not appear 
in the momentum balance and the driving force arises in the momentum balance 
at the free surface. The argument for oscillatory instability did not depend on 
the source of the driving force, however, and the local acceleration in time- 
dependent motions should still partially offset the constraining force of rotation. 
We then expect the same conclusion: oscillatory instability driven by surface- 
tension variations should be possible in a rotating fluid layer, especially for 
fluids with small Prandtl numbers. 

With these arguments in mind the authors decided to re-examine Vidal & 
Acrivos’s conclusion on the possibility of oscillatory instability in surface-tension 
driven convection with rotation. If  oscillatory instability occurs at all we expect 
it to occur for large speeds of rotation. Thus the analysis is limited to the case of 
Taylor number approaching infinity. The analysis is similar to that done by 
Vidal & Acrivos: the exact solution to the differential equations is substituted 
into the boundary conditions, leaving a complex number for the eigenvalue, 
the Marangoni number. Since this number is real (a ratio of physical parameters), 
solutions can exist only if the imaginary part of the complex number is zero. 
We search the parameter space numerically for situations where this is true and 
find that oscillatory instability occurs for values of the parameters not con- 
sidered by Vidal & Acrivos. 

The results are similar in all respects to the buoyancy problem. Stationary 
instability is the preferred mode of instability if the Prandtl number is above 
0-201. Tor fluids with lower Prandtl numbers, oscillatory instability occurs pro- 
vided the fluid layer is rotated fast enough. 

2. Equations 
The linear hydrodynamic stability analysis is similar in both method and 

notation to that of Chandrasekhar (1961) and Vidal & Acrivos (1966b). We 
consider a physical system consisting of a homogeneous liquid layer having 
infinite horizontal dimensions and constant depth d. The fluid is confined at  
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the bottom (z  = a) by an isothermal rigid boundary and at the top ( z  = 0) 
by a, non-deformable free surface, where z is the vertical co-ordinate. The 
fluid layer is heated uniformly from below while rotating at  an angular velocity 
i2 about the z axis and is assumed to be so shallow that only the surface tension 
mechanism contributes to instability. We assume that all physical properties 
of the liquid are constant except surface tension, which varies linearly with 
temperature. 

The basic equations are derived by Vidal & Adrivos (1966b); we adopt them 
with a slight change in non-dimensionalization and assume an exponential 
time dependence. 

(2.1) i 
a(D2-a2)W = (D2-aa2)aW-T#DZ, 

aP8 = (D2-aZ)O-M4aW, 
a2 = (D-a2)Z+T#DW, 

where W ,  8 and 2 are the non-dimensional vertical component of velocity, 
temperature and vertical component of vorticity, measured in units of vld, 
Pvd/(aKMB), and v/da, respectively. Here v is the kinematic viscosity, p the 
temperature gradient, and K the thermal diffusivity, P = v / K ,  and a, the dimen- 
sionless wave-number. The boundary conditions are 

} (2.2) 
W = DZ = DB = D2W-Mh9 = 0 at Z =  0, 

w= 2 = e =  D W =  0 a t  z = 1, 

where M = s p d 2 / p  is the Marangoni number, s = da /d t  is the surface tension 
variation with temperature. andp is the viscosity. Equations (2. l), (2.2) represent 
a non-self-adjoint eigenvalue problem in the time factor g. It is well known that 
such problems admit complex eigenvalues leading to oscillatory instability or 
decay. Even without rotation, T = 0, the problem is non-self-adjoint. In that 
case, however, oscillatory instability does not occur (Vidal & Acrivos 1966a), 
and it is instructive to rearrange these equations to demonstrate why oscillatory 
instability should occur for large Taylor number. 

We multiply (2.1) by - W*, 8* and Z*, respectively, and integrate over the 
region 0 < z < 1. The asterisk denotes the complex conjugate of a complex num- 
ber. The boundary conditions are applied and the three equations are then added 
to obtain 

where A and B are real positive numbers and the coefficient of Tt is a purely 
imaginary number. We now consider the asymmetry of (2.3) and argue by analogy 
with the buoyancy-driven problem. In that case M is replaced by R, the Rayleigh 
number, and the coefficient of Mg becomes a real number.? In  the buoyancy- 
driven problem, therefore, when T = 0 the time factor cr can only be a real 

t Equations in a slightly different form were developed by Finlayson (1968, equation 
(2.3) ) for the buoyancy-driven problem. Those equations, derived for the first approxi- 
mation when using the Galerkin method, can be reinterpreted in terms of the exwt 
solution and added to obtain the analogue to equation (2.3) here. 

4-2 
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number and oscillatory instability is impossible. When T =k 0 complex time 
factors v are then possible and are associated with the presence of the term 
multiplied by T*. 

With the surface-tension driven problem the coefficient of M* is no longer a 
real number and complex time factor cr may be possible even when T = 0. 
Numerical computations of Vidal & Acrivos (1966a)  indicate, however, that 
oscillatory instability does not occur when T = 0. If rotation is introduced the 
term multiplying T4 becomes important as in the buoyancy-driven problem 
and it would be surprising if oscillatory instability could not occur if T is large 
enough. In the next section we find that oscillatory instability can indeed occur. 

3. Solution 
Vidal & Acrivos (1966b) have shown that, in the asymptotic case Tj-co, 

equations (2.1) become independent of Taylor number after the transformation : 

} (3 .1)  
a = a,Tf, iu = iyT*, D = DOT), 

M = MOT*, z = zT-f, W = W,, 8 = 8,. 

Only the boundary conditions at  x = 0 are important since the solution is con- 
fined to an Ekman layer near the free surface. The solution is written as a sum 
of exponentials whose coefficients are determined to satisfy the boundary con- 
ditions. The final expression for the Marangoni number can be written 

4 Z Aj/(Pj+q) 
i=l 

where q is the root of qZ-a,2-iyP = 0, (3 .3)  

(put - a$) (& - a: - iy)2+& = 0, (3 .4)  

having a negative real part and pj are the three roots of 

having negative real parts, and the Aj are determined by applying the boundary 
conditions (2 .2a ) .  Equation (3 .2 )  can be written simply 

Mo = RM(a,, P ,  y )  + i Im (a,, P ,  y).  (3.5) 

where RM(a,, P,  y )  and Im (a,, P, y )  are real valued functions. Since No is a 
real number we must determine which values of a,, P and y make Im (ao, P,  y )  = 0. 

If the principle of exchange of stabilities is valid, only the value y = 0 will 
make Im (ao, P, y )  vanish. The neutral stationary stability curve thus obtained 
from (3 .5 )  will be a curve of Mo(a,) which is independent of the Prandtl number. 
If oscillatory instability occurs, a family of neutral oscillatory stability loci 
will exist which depend on the Prandtl number. 

The neutral oscillatory stability locus will be characterized by non-zero 
frequency factors y which make Im (a,, P, y )  vanish for a given Prandtl number 
and wave-number. The oscillatory neutral stability loci, M, us. a,, have been 
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calculated numerically for Prandtl number = 0.01, 0.10, 0.15, 0.20 and 0.25 
and are presented in figure 1. The critical Marangoni and wave-numbers are 
reported in table 1 and result from numerical minimization of (3.5) subject to 
the condition that Im (ao, P ,  y )  vanish. 

Nature of 
instability 

Stationary 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 

Prandtl 
number 

P 

All 
0.010 
0.10 
0.15 
0.20 
0.2014 

Critical 
frequency 

factor 
Y c  

0 
0.6887 
0.3446 
0.2434 
0.1477 
0.1456 

Critical 
Marangoni 

number 
M: 

4.42 
1-254 
3.149 
3.823 
4-405 
4.420 

Critical 
wave-number 

a: 
0.50 
0.135 
0.285 
0.315 
0-335 
0.336 

TABLE 1. Critical values of Marangoni number for oscillatory instability 

0 2 4 6 8 10 12 

M,,, Marangoni number 

FIGURE 1. Neutral stability curves for stationary and oscillatory instability. a, stationary 
instability; oscillatory instability: b,  P = 0.25; c, P = 0-20; d, P = 0.15; e, P = 0.10; 
j, P = 0.01. 

A Prandtl number P* exists such that for all P > P* the critical Marangoni 
number for oscillatory instability is always greater than the critical Marangoni 
number for stationary instability. Hence, for P > P*, convection will always 
occur as stationary convection and we find, numerically, that P* = 0.201. 
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These results are qualitatively similar to results for buoyancy-driven con- 
vection with Coriolis force. Figure 1 for the surface-tension mechanism is 
similar to figure 27 in Chandrasekhar (1961, p. 117) for the buoyancy mechanism. 
Figure 2 summarizes the state of knowledge about the inhibiting effect of Coriolis 

I 1 I I 
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Log T 

FIGURE 2. Critical Marangoni number as a function of Taylor number. a, stationary 
instability; oscillatory instability: b, P = 0.1: c, P = 0.01. 
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FIGURE 3. The function Im(cr,, P ,  y )  versus frequency factor. a0 = 0.1, P = 0.1 
-, correct value; - - -, incorrect extrapolation. 

forces on surface-tension driven convection. Even though results are not known 
for intermediate Taylor numbers, the behaviour as T -+ 00 is similar to that ob- 
tained in the buoyancy problem (Chandrasekhar 1961, p. 121). Both mechanisms 
have a value of P above which no oscillatory instability occurs: P* = 0.201 



Surface tension driven oscillatory instability 55 

for the surface-tension mechanism whereas P* = 0.677 for the buoyancy mech- 
anism. The asymptotic dependence on Taylor number is different since R = 

ROT%, a = a,T+ for the buoyancy mechanism. For the surface-tension problem 
the typical results are deduced from table 1 : for P = 0.10, M = MOT+ = 3.149T4, 
a = a,T& = 0.2857'4. 

The results presented here differ from those reported by Vidal & Acrivos 
(1966b). Since the two methods of solution are the same, it is important to 
understand why different results are achieved. These results do not contradict 
the earlier ones provided we limit consideration to the same parameter values. 
Vidal & Acrivos calculated the function Im (ao, P, y )  for values of P = 0.1, 
0.25, 0.5, 0.7, 1, 7 and a, = 0.1, 0.5, 1, 2 ,  5,  10. Of the 36 possible pairs of para- 
meters we find only two yield Im (a,, P ,  y )  = 0 and then only for values of y 
not considered previously. For example, for P = 0.1, a, = 0.1, Im = 0 for 
y = 0.13. This root was missed in the earlier work since it examined only y = 0, 
0-2 and higher values. Figure 3 illustrates the true value of Im (solid line) and 
the incorrect extrapolation (dotted line) based on values of y = 0, 0.2, 0.4, etc. 

4. Conclusions 
The principle of exchange of stabilities is not valid for surface-tension driven 

instability with rotation. I n  the asymptotic limit T + co the conditions are 
determined for which overstable oscillations will occur. If the Prandtl number is 
above 0.201 stationary instability is preferred. For smaller Prandtl numbers, 
the critical Marangoni number for oscillatory instability varies as M = MOT*, 
where No depends on the Prandtl number. 
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